Quality parameter adaptive optimization for spinning process using dynamic non-dominated sorting algorithm

Author:

Wu Di1,Sheng Hu2

Affiliation:

1. Shaanxi University of Chinese Medicine, Xian Yang

2. Xi’an Polytechnic University

Abstract

Abstract Intelligent textile equipment can discover potential patterns in the production process through data mining, and utilize these patterns through intelligent optimization, ultimately achieving intelligent and automated textile production. This paper focuses on the spinning process parameters optimization under changing spinning conditions and proposes a dynamic non-dominant ranking parameter quality adaptive optimization algorithm. Firstly, the changing factors of spinning conditions is analyzed to explore the influence of the change of spinning process conditions on the quality optimization of spinning parameters. Then the factors of spinning process condition changes is transformed into mathematical dynamic constraints and constructing an adaptive optimization model for spinning parameter quality. Basis on this, the response mechanism of spinning environment is established to readjust the optimization direction according to the change of spinning conditions, and the DNSGA-II is used to solve the quality adaptive optimization model. A case study is designed to validate the effectiveness of the proposed method. Compared with other data-driven methods, the proposed method offers enhanced performance in terms of providing corresponding parameter optimization combinations for different spinning conditions.

Publisher

Research Square Platform LLC

Reference29 articles.

1. A big-data-driven matching model based on deep reinforcement learning for cotton blending[J];Xia H;Int J Prod Res,2022

2. Zhang XY, Ma L, Peng KX et al (2023) A Novel Quality-Related Distributed Fault Diagnosis Framework for Large-Scale Sequential Manufacturing Processes[J]. IEEE Transactions on Industrial Informatics, 1–11. DOI10.1109/TII.2023.3323675

3. Intelligent control model for yarn quality based on multi-process knowledge association[J];Shao JF;Control Theory & Applications,2018

4. Worsted spinning process parameters inversion model using mixed population genetic neural network[J];Yang JG;J Text Res,2016

5. Teaching-learning based optimization of ring and rotor spinning processes[J];DIYALEY S;Soft Comput,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3