GDF15 propeptide promotes bone metastasis of castration-resistant prostate cancer by augmenting the bone microenvironment

Author:

Yamamichi Gaku1,Kato Taigo1,Arakawa Noriaki2,Ino Yoko3,Ujike Takeshi1,Nakano Kosuke1,Koh Yoko1,Motoyama Yuichi1,Outani Hidetatsu1,Myoba Shohei4,Ishizuya Yu1,Yamamoto Yoshiyuki1,Hatano Koji1,Kawashima Atsunari1,Fukuhara Shinichiro1,Uemura Hiroji5,Okada Seiji1,Morii Eiichi1,Nonomura Norio1,Uemura Motohide6

Affiliation:

1. Osaka University

2. National Institute of Health Sciences

3. Yokohama City University

4. Tosoh (Japan)

5. Yokohama City University Medical Center

6. Fukushima Medical University

Abstract

Abstract

Background Bone metastasis (BM) is a common and fatal condition in patients with castration-resistant prostate cancer (CRPC). However, there are no useful blood biomarkers for CRPC with BM, and the mechanism underlying BM is unclear. In this study, we investigated precise blood biomarkers for evaluating BM that can improve the prognosis of patients with CRPC. Methods We comprehensively examined culture supernatants from four prostate cancer (PCa) cell lines using Orbitrap mass spectrometry to identify specific proteins secreted abundantly by PCa cells. The effects of this protein to PCa cells, osteoblasts, osteoclasts were examined, and BM mouse model. In addition, we measured the plasma concentration of this protein in CRPC patients for whom bone scan index (BSI) by bone scintigraphy was performed. Results A total of 2,787 proteins were identified by secretome analysis. We focused on GDF15 propeptide (GDPP), which is secreted by osteoblasts, osteoclasts, and PCa cells. GDPP promoted the proliferation, invasion, and migration of PC3 and DU145 CRPC cells, and GDPP aggravated BM in a mouse model. Importantly, GDPP accelerated bone formation and absorption in the bone microenvironment by enhancing the proliferation of osteoblasts and osteoclasts by upregulating individual transcription factors such as RUNX2, OSX, ATF4, NFATc1, and DC-STAMP. In clinical settings, including a total of 386 patients, GDPP was more diagnostic of BM than prostate-specific antigen (PSA) (AUC = 0.92 and 0.78) and the seven other blood biomarkers (alkaline phosphatase, lactate dehydrogenase, bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b, osteocalcin, procollagen I N-terminal propeptide and mature GDF15) in patients with CRPC. The changes in BSI over time with systemic treatment were correlated with that of GDPP (r = 0.63) but not with that of PSA (r = -0.16). Conclusions GDPP promotes a vicious cycle in the BM microenvironment and is a novel blood biomarker of BM in CRPC, which could lead to early treatment interventions in patients with CRPC.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3