Uav for Crop Monitoring System Using Computer Vision

Author:

M Ajay Pranesh1,Varghese Geoffrey George1,Reyaz Md Abu Talha1ORCID

Affiliation:

1. Kumaraguru College of Technology

Abstract

Abstract

This study focuses on the vital task of detecting Banana Black Sigatoka in banana plants using a cutting-edge method that combines deep learning algorithms with Unmanned Aerial Vehicles (UAVs). The research includes building a detailed dataset that features images of both healthy and infected banana plants. A variety of deep learning algorithms, such as convolutional neural networks and residual networks, are thoroughly tested to select the most effective model for analyzing this dataset. The selected algorithm is then integrated into a UAV-based system for the real-time detection of Black Sigatoka within banana plantations. This proactive strategy allows for the quick detection and localization of affected plants, making it possible to intervene promptly and improve overall crop management. The proposed method marks a significant step forward in using technology for precision agriculture, aiming to enhance the resilience and productivity of banana farming.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3