Affiliation:
1. University of Miami, Miller School of Medicine
2. Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
3. the University of Miami Miller School of Medicine
Abstract
Abstract
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC arrays. We conducted a comprehensive assessment of the EPIC array probe reliability using 138 duplicated blood DNAm samples generated by the Alzheimer's Disease Neuroimaging Initiative study. We introduced a novel statistical measure, the modified intraclass correlation, to better account for the disagreement in duplicate measurements. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNA measurements. Our findings, which provide crucial reliable information for probes on the EPIC array, will serve as a valuable resource for future DNAm studies.
Publisher
Research Square Platform LLC