Grasping pose detection based on self-attention and convolutional neural networks

Author:

Pu Quan-cheng1,Xu Xiang-rong1,Zhang Hui1

Affiliation:

1. Anhui University of Technology

Abstract

Abstract To address the challenges commonly encountered in existing robotic arm grasping networks, this study introduces a lightweight grasping pose detection network, SA-Grasp. This network employs a deep convolutional neural network as its backbone structure, utilizes the Coordinate Attention to suppress the interference of irrelevant information, and incorporates a self-attention module to aggregate global image information. Experimental results demonstrate that SA-Grasp achieves impressive grasping detection accuracies of 98.37% and 97.19% on the image-wise and object-wise subsets of the Cornell dataset, respectively, and a grasping detection accuracy of 96.33% on the Jacquard dataset. Furthermore, the network requires a mere 21 ms to detect a single image. When applied to a real-world planar grasping experimental platform for 180 grasping experiments across nine types of objects, SA-Grasp achieves a grasping success rate of 94.44%, thereby verifying its reliability.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3