A Reinforced Deep Reinforcement Learning Method for UAV Target Tracking

Author:

Zhang Yafeng,Ma Haiying1,Lu Hai2,Luo Siling3,Yang Gang3,Yu Linjiang3,Ye Shuaihong3

Affiliation:

1. Xijing University

2. State-owned Changhong Machinery Factory

3. Taizhou Vocational College of Science & Technology

Abstract

Abstract In response to challenges faced during unmanned aerial vehicle (UAV) image target tracking, such as target orientation changes, occlusion variations, and limited sample diversity, we propose a reinforced deep reinforcement network-based algorithm for UAV aerial image target tracking. Addressing the issue of limited sample diversity, we enhance the original samples through occlusion and rotation. Next, we construct an improved deep belief network to distill representative deep features, ensuring the deep model can accurately and rapidly adapt to target shape changes and obtain the pre-localization region of the target to be detected. We then employ a reinforcement learning algorithm for precise target localization. Finally, a deep forest classifier is utilized to output the final target tracking results. Comparative experiments on multiple datasets demonstrate that the proposed algorithm achieves high tracking accuracy, is capable of handling target rotation and occlusion, and exhibits excellent precision and robustness.

Publisher

Research Square Platform LLC

Reference31 articles.

1. Siamese object tracking for unmanned aerial vehicle: A review and comprehensive analysis[J];Fu C

2. Li S, Yeung DY (2017) Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 31(1)

3. Unmanned aerial vehicle video-based target tracking algorithm using sparse representation[J];Wan M;IEEE Internet of Things Journal,2019

4. The unmanned aerial vehicle benchmark: Object detection, tracking and baseline[J];Yu H;Int J Comput Vision,2020

5. Liu K, Zhou X, Zhao B et al (2022) An integrated visual system for unmanned aerial vehicles following ground vehicles: Simulations and experiments[C]//2022 IEEE 17th International Conference on Control & Automation (ICCA). IEEE, : 593–598

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3