Hierarchical, Porous Hydrogels Demonstrating Structurally Dependent Mechanical Properties

Author:

Lloyd Elisabeth1,Alhasan Rami2ORCID,Dhakal Sujata3,Morozova Svetlana3,Tree Douglas2,Hickey Robert1ORCID

Affiliation:

1. Pennsylvania State University

2. Brigham Young University

3. Case Western Reserve University

Abstract

Abstract While hierarchical ordering is a distinctive feature of natural tissues and is directly responsible for their diverse and unique properties, research efforts to synthesize biomaterials have primarily focused on using molecular-based approaches without considering multiscale structure. Here, we report a bottom-up self-assembly process to produce highly porous hydrogels that resemble natural tissues both structurally and mechanically. Randomly oriented, physically crosslinked nanostructured micelles form the walls of aligned, polymer-rich pore walls that surround water-rich cavities. Extremely soft elastic modulus (< 1 kPa), highly stretchability (greater than 12-times), strain-hardening, and completely reversible deformation result from the hierarchical structure. Independent control of nano and macroscales is realized through the combination of polymer macromolecular parameters and processing conditions, directly impacting the resulting phase behavior. Here, we demonstrate precise control of the material structure and structure orientation over many orders of magnitude (e.g., nm – µm), and reveal how the multiscale structure directly impacts mechanical properties.

Publisher

Research Square Platform LLC

Reference50 articles.

1. Biological composites-complex structures for functional diversity;Eder M;Science,2018

2. Structural biological materials: critical mechanics-materials connections;Meyers MA;Science,2013

3. Biomimetic materials for tissue engineering;Shin H;Biomaterials,2003

4. Mechanically Diverse Gels with Equal Solvent Content;Sheiko SS;ACS Cent Sci,2022

5. Lee KY, Peters MC, Anderson KW, Mooney DJ (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 2000 408:6815 408, 998–1000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3