LysipheN : A gravimetric IoT device for Near Real-time High-Frequency Crop Phenotyping: a case study on common beans

Author:

Pineda-Castro Duvan1,Diaz Harold1,Soto Jonatan1,Urban Milan Oldřich1

Affiliation:

1. The Alliance of Bioversity International and CIAT

Abstract

Abstract Climate instability directly affects agro-environments. Water scarcity, high air temperature, and changes in soil biota are some factors caused by environmental changes. Verified and precise phenotypic traits are required for assessing the impact of various stress factors on crop performance while keeping phenotyping costs at a reasonable level. Experiments which use a lysimeter method to measure transpiration efficiency are often expensive and require complex infrastructures. This study presents the development and testing process of an automated, reliable, small, and low-cost prototype system using IoT with high-frequency potential in near-real time. Because of its waterproofness, our device - LysipheN - assesses each plant individually and can be deployed for experiments in different environmental conditions (farm, field, greenhouse, etc.). LysipheN integrates multiple sensors, automatic irrigation according to desired drought scenarios, and a remote, wireless connection to monitor each plant and device performance via a data platform. During testing, LysipheN proved to be sensitive enough to detect and measure plant transpiration, from early to ultimate plant developmental stages. Even though the results were generated on common beans, the LysipheN can be scaled up/adapted to other crops. This tool serves to screen transpiration, transpiration efficiency, and transpiration-related physiological traits. Because of its price, endurance, and waterproof design, LysipheN will be useful in screening populations in a realistic ecological and breeding context. It operates by phenotyping the most suitable parental lines, characterizing genebank accessions, and allowing breeders to make a target-specific selection using functional traits (related to the place where LysipheN units are located) in line with a realistic agronomic background.

Publisher

Research Square Platform LLC

Reference51 articles.

1. Desarrollo de líneas de frijol (Phaseolus vulgaris L.) tolerante a sequía a partir de cruces inter acervo con genotipos procedentes de diferentes orígenes (Mesoamericano y Andino);Mayor-Duran VM;Acta Agron,2016

2. Root hydraulics: The forgotten side of roots in drought adaptation;Vadez V;Field Crops Res,2014

3. Evaluation of common bean genotypes for drought tolerance;Ribeiro T;Bragantia,2019

4. Kholová J, Urban MO, Cock J, Arcos J, Arnaud E, Aytekin D et al. In pursuit of a better world: crop improvement and the CGIAR. J Exp Bot [Internet]. 2021 [cited 2023 Mar 1];72:5158–79. Available from: https://academic.oup.com/jxb/article/72/14/5158/6280245.

5. Running to stand still: Adaptation and the response of plants to rapid climate change;Jump AS;Ecol Lett,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3