A PhC-SOA based cancerous cell detection biosensor

Author:

Moshfe Sajjad1,Zarei Mahtab1

Affiliation:

1. Islamic Azad University

Abstract

Abstract In this paper, we present a novel method to design an ultra-small photonic integrated biosensor to detect cancerous cells. The proposed biosensor is based on the self-phase modulation in PhC-SOA, inducing a frequency shift on a pulse traveling through the device. The amount of the frequency chirp depends on the group velocity of the active medium waveguide being determined by the refractive index of the microfluidic infiltrating the holes around the waveguide. The refractive index of the microfluidic is also determined by the cell type that can be normal or cancerous. Since the refractive index of a cancerous cell is higher than that of a normal one, the group index of the waveguide and the output chirp will decrease. By measuring the amount of the output chirp, we can detect the cell type. The Simulation results showed that for a 0.02 change in the refractive index of the cell, a 3.71 nm central wavelength shift occurred for a 10-ps 71-mW gaussian pulse input with a central wavelength of 1533.53876 nm. In terms of the wavelength shift, the sensitivity and figure of merit are 185.5 and 530, respectively. To detect the cell type, we integrated a PhC channel drop filter to drop the chirped signal due to the cancerous cell infiltration. Designing an appropriate PhC-CDF leads to achieving an ultra-small cancerous detection cell biosensor with more than 97% precision.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3