Abstract
Abstract
Finding efficient and sustainable methods for the remove of 2,4,6-trinitrotoluene (TNT) from industrial wastewater is an important research area in the field of environment. This paper explores the application of sustainable biomass-derived carbon produced from rice straw for the adsorption of 2,4,6-trinitrotoluene (TNT) red water. The rice straw-derived biochar (SBC) materials were synthesized by two-step reactions through hydrothermal carbonization and chemical activation with KOH. Characterization of the fabricated biochar was conducted using various techniques. Here the chemical oxygen demand (COD) was used as an evaluation index for adsorption efficiency. The adsorption kinetics showed a good fit with the pseudo-second-order model, and the adsorption equilibrium was achieved in 30 min. The biochar’s high surface area (1319 m2/g) and large pore volume (1.058 cm3/g) gave it a large adsorption capacity. The Langmuir model exhibited better correlation for equilibrium data analysis, with a maximum adsorption capacity of 173.9 mg/g at 298 K. The SBC was found to have a high removal effect over a wide pH range (from 1 to 13) and showed remarkable stability after undergoing five desorption-adsorption cycles using ethanol and acetone as eluent. The results provide a simple and low-cost method for the efficient treatment of TNT red water.
Publisher
Research Square Platform LLC