A machine learning model to predict the histology of retroperitoneal lymph node dissection specimens

Author:

Nitta Satoshi1,Kojima Takahiro2,Gido Masanobu1,Nakagawa Shota1,Kakeya Hideki1,Kandori Shuya1,Kawahara Takashi1,Mathis Bryan J.3,Kawai Koji4,Negoro Hiromitsu1,Nishiyama Hiroyuki1

Affiliation:

1. University of Tsukuba

2. Aichi Cancer Center Hospital

3. University of Tsukuba Affiliated Hospital

4. International University of Health and Welfare Narita Hospital

Abstract

Abstract Background While post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND) benefits patients with teratoma or viable germ cell tumors (GCT), it becomes overtreatment if necrosis is detected in PC-RPLND specimens. Serum microRNA-371a-3p correctly predicts residual viable GCT with 100% sensitivity but residual teratoma in PC-RPLND specimens using current modalities remains difficult. Therefore, we developed a machine learning model using CT imaging and clinical variables to predict the presence of residual teratoma in PC-RPLND specimens. Methods We included 58 patients who underwent PC-RPLND between 2005 and 2019 at the University of Tsukuba Hospital. On CT imaging, 155 lymph nodes were identified as regions of interest (ROIs). The ResNet50 algorithm and/or Support Vector Machine (SVM) classification were applied and a nested, 3-fold cross-validation protocol was used to determine classifier accuracy. Results PC-RPLND specimen analysis revealed 35 patients with necrosis and 23 patients with residual teratoma while histology of 155 total ROIs showed necrosis in 84 ROIs and teratoma in 71 ROIs. The ResNet50 algorithm, using CT imaging, achieved a diagnostic accuracy of 80.0%, corresponding to a sensitivity of 67.3%, a specificity of 90.5%, and an AUC of 0.84 while SVM classification using clinical variables achieved a diagnostic accuracy of 74.8%, corresponding to a sensitivity of 59.0%, a specificity of 88.1%, and an AUC of 0.84. Conclusions Our machine learning models reliably distinguish between necrosis and residual teratoma in clinical PC-RPLND specimens.

Publisher

Research Square Platform LLC

Reference28 articles.

1. Guidelines on Testicular Cancer: 2015 Update;Albers P;Eur Urol,2015

2. Testicular Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology;Gilligan T;J Natl Compr Canc Netw,2019

3. Sheinfeld J, Bartsch G, Bosl G. Surgery of testicular tumors. In: Kavoussi L, Novick AC, Partin AW, Peters CA, Wein, editors. Campbell-Walsh Urology Ninth edition. Philadelphia: Saunders Elsevier; 2007. pp. 936–58.

4. Improved clinical outcome in recent years for men with metastatic nonseminomatous germ cell tumors;Carver BS;J Clin Oncol,2007

5. The impact of bleomycin on retroperitoneal histology at post-chemotherapy retroperitoneal lymph node dissection of good risk germ cell tumors;Cary KC;J Urol,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3