Probabilistic Nested Model Selection in Pharmacokinetic Analysis of DCE-MRI Data in Animal Model of Cerebral Tumor

Author:

Bagher-Ebadian Hassan1,Brown Stephen1,Ghassemi Mohammad M.2,Acharya Prabhu C.3,Chetty Indrin J.4,Ewing James R.1,Movsas Benjamin1,Thind Kundan1

Affiliation:

1. Henry Ford Hospital

2. Michigan State University

3. Oakland University

4. Cedars-Sinai Medical Center

Abstract

Abstract

Purpose Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel’s CA time-trace. This study introduces an unsupervised feature engineering technique (Kohonen-Self-Organizing-Map (K-SOM)) to estimate the voxel-wise probability of each nested model. Methods Sixty-six immune-compromised-RNU rats were implanted with human U-251N cancer cells, and DCE-MRI data were acquired from all the rat brains. The time-trace of change in the longitudinal-relaxivity (ΔR1) for all animals’ brain voxels was calculated. DCE-MRI pharmacokinetic (PK) analysis was performed using NMS to estimate three model regions: Model-1: normal vasculature without leakage, Model-2: tumor tissues with leakage without back-flux to the vasculature, Model-3: tumor vessels with leakage and back-flux. Approximately two hundred thirty thousand (229,314) normalized ΔR1 profiles of animals’ brain voxels along with their NMS results were used to build a K-SOM (topology-size: 8x8, with competitive-learning algorithm) and probability map of each model. K-fold nested-cross-validation (NCV, k = 10) was used to evaluate the performance of the K-SOM probabilistic-NMS (PNMS) technique against the NMS technique. Results The K-SOM PNMS’s estimation for the leaky tumor regions were strongly similar (Dice-Similarity-Coefficient, DSC = 0.774 [CI: 0.731–0.823], and 0.866 [CI: 0.828–0.912] for Models 2 and 3, respectively) to their respective NMS regions. The mean-percent-differences (MPDs, NCV, k = 10) for the estimated permeability parameters by the two techniques were: -28%, + 18%, and + 24%, for vp, Ktrans, and ve, respectively. The KSOM-PNMS technique produced microvasculature parameters and NMS regions less impacted by the arterial-input-function dispersion effect. Conclusion This study introduces an unsupervised model-averaging technique (K-SOM) to estimate the contribution of different nested-models in PK analysis and provides a faster estimate of permeability parameters.

Publisher

Research Square Platform LLC

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3