Intrusion detection model based on multi-kernel approximation and multi-layer neural network
Author:
Affiliation:
1. Hangzhou Vocational and Technical College
2. Zhejiang Anteng Information Technology Co.,Ltd
3. Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology
Abstract
Aiming to address the problems of low time efficiency and poor generalization ability in support vector machine(SVM) model when dealing with large-scale network intrusions, this paper suggests a large-scale robust intrusion detection model that combines multi-layer neural network and multi-kernel approximate support vector machines. The multi-layer neural network carries out representation learning, learns the essential properties of the dataset, and performs feature reduction on the dataset. The multi-kernel approximation SVM using random Fourier characteristics to perform kernel approximation can handle large-scale datasets. The model employs the gradient descent method to train neural networks and multi-kernel SVM from start to finish. Our model was tested on three intrusion detection datasets of varying scales: NSL-KDD, UNSW-NB15, and CICIDS2017; and compared with conventional machine learning models, deep learning models, and SVM models of different variants. The experimental findings show that our model has higher classification performance and better robustness when processing large-scale datasets, and has more advantages in terms of time complexity.
Publisher
Research Square Platform LLC
Reference30 articles.
1. 1. Mahfouz, A. M., Venugopal, D., & Shiva, S. G. Comparative analysis of ML classifiers for network intrusion detection. In Fourth international congress on information and communication technology, 2020, pp. 193–207. Springer, Singapore.
2. 2. Pozi, M. S. M., Sulaiman, M. N., Mustapha, N., & Perumal, T. Improving anomalous rare attack detection rate for intrusion detection system using support vector machine and genetic programming. Neural Process Lett, 2016,44(2), 279–290.
3. 3. Zhang, J., Zulkernine, M., & Haque, A. Random-forests-based network intrusion detection systems. IEEE T Syst Man Cy C (Applications and Reviews), 2008,38(5), 649–659.
4. 4. Farnaaz, N., & Jabbar, M. A. Random forest modeling for network intrusion detection system. Procedia Computer Science, 2016,89, 213–217.
5. 5. Kunang, Y. N., Nurmaini, S., Stiawan, D., & Suprapto, B. Y. Attack classification of an intrusion detection system using deep learning and hyperparameter optimization. J Inf Secur Appl, 2021,58, 102804.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3