GenX uptake by wheat and flooded and non-flooded rice: greenhouse experiment.

Author:

Zbedy Amnah Al1,Müller Viktoria2,Kindness Andrew3,Ebel Rainer1,Norton Gareth J1,Feldmann Jörg4ORCID

Affiliation:

1. University of Aberdeen

2. University of Graz: Karl-Franzens-Universitat Graz

3. The James Hutton Institute Aberdeen

4. University of Graz

Abstract

Abstract GenX (hexafluoropropylene oxide dimer acid) belongs to the group of per- and poly-fluoroalkyl substance (PFAS) compounds introduced to replace perfluorooctanoic acid (PFOA), which has been phased out in industrial and consumer product formulations. While GenX has been investigated in lab animals, there is limited information available regarding its uptake and translocation in wheat and rice. This study reports on a greenhouse experiment in which wheat and rice grown under flooded and non-flooded conditions were exposed to two GenX concentrations in the soil (0.4 mg kg− 1 and 2 mg kg− 1). GenX was analysed in the soil, porewater and shoots using targeted liquid chromatography-tandem mass spectroscopy (LC-MS/MS) analysis. Extractable organic fluorine (EOF) was determined using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR GFMAS). Results showed that different species took up different amounts of GenX. The GenX in rice shoots was found to be 2.34 (± 0.45) µg g− 1 and 4.11 (± 0.87) µg g− 1 under flooded and non-flooded conditions, respectively, at a low exposure level. At high exposure, the GenX concentrations in flooded and non-flooded rice shoots increased threefold to 10.4 (± 0.41) and 13.4 (± 0.72) µg g− 1, respectively. Wheat shoots showed similar concentrations and increases between low- and high-level exposure. The translocation factor was significantly higher (P = 0.013) in non-flooded rice compared to flooded rice. The GenX bioaccumulation behaviours under the same culture conditions (e.g. temperature, humidity, light, same GenX concentration in the soil) were significantly different in non-flooded and flooded rice (P < 0.001). Non-flooded rice plants displayed a higher level of GenX bioaccumulation than flooded ones. Following exposure to GenX, flooded rice plants showed a reduction in biomass (25%) compared to the control plants (P < 0.014). Our findings indicate that GenX is a bioaccumulative compound, the presence of which likely inhibits the growth of plants.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3