Loss of fatty acid-binding protein 7 enhances metastasis in B16F10 melanoma cells through phenotypic shift

Author:

Wannakul Tunyanat1,Miyazaki Hirofumi1,Maekawa Motoko1,Kagawa Yoshiteru1,Yamamoto Yui2,Owada Yuji1

Affiliation:

1. Tohoku University

2. Tohoku Medical and Pharmaceutical University

Abstract

Abstract

Melanoma possesses the characteristic phenotypic plasticity, enhancing its metastatic formation and drug resistance. Lipid and fatty acid metabolism are usually altered to support melanoma progression and can be targeted for therapeutic development. Fatty acid binding protein 7 (FABP7) is highly expressed in melanomas and is shown to support its proliferation, migration, and invasion, but the mechanisms remain unclear. Our study aimed to link FABP7 to lipid metabolism and phenotypic shift in melanomas. We established the Fabp7-knockout (KO) B16F10 melanoma cells, which showed an enhanced invasion through matrix-coated membrane, without significant change in proliferation. Similar outcomes were obtained when using RNA interference targeting FABP7. Fabp7-KO cells injected into mice exhibited slower primary tumor growth, but formed higher metastatic foci count in the lungs. We also discovered a higher saturation in overall lipids, phosphatidylcholines, and triacylglycerols. We observed transcriptional shifts toward the invasive MITFLow/AXLHigh phenotype, with upregulation of transforming growth factor-beta (TGF-β) receptor mRNAs. In conclusion, FABP7 may help balancing lipid saturation and maintain the proliferative state of melanomas, mitigating invasiveness and metastatic formation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3