Investigation of microcapsules based self-healing composites embedded with carbon nanotubes for improved healing efficiency

Author:

V Naveen1ORCID,Kumar Drisya R,NT Manikandanath R,A Sri Ganesh R,Shri Siju,G Srinivas

Affiliation:

1. CSIR NAL: CSIR National Aerospace Laboratories

Abstract

Abstract

Self-healing composites are smart materials that can self-detect and prevent micro crack propagation and any catastrophic failure in the composite structure. In this study, dicyclopentadiene (DCPD) monomer was encapsulated with urea formaldehyde (UF) by in situ polymerization. These microcapsules were mixed with epoxy, chopped carbon fiber (CF), and multi-walled carbon nanotubes (CNT) to make self-healing composite. Both microcapsules and the composite specimens were extensively tested for their physical, thermal, and mechanical properties. The average diameter and shell thickness of the microcapsules were 268 µm and 805 nm, respectively. DMA analysis suggested that the microcapsules have a glass transition temperature (Tg) of 85°C. FTIR analysis confirmed the presence of CF, multi-walled carbon nanotubes (MWCNT), and other constituents in the composite. The tensile strength of the self-healing composites was tested as per ASTM standards. The incorporation of MWCNT in the composites has significantly improved the tensile strength of the composite without compromising on the self-healing efficiency (90%) compared the unmodified samples (72%). The encouraging results of higher glass transition temperature (85°C) combined with an improved healing efficiency (90%), can be considered as the novelties of this work. As the test results of microcapsules and composite specimens were encouraging, they can find applications in making composite structures for aerospace, windmills, and marine applications. The experimental observations and test results are discussed in detail.

Publisher

Research Square Platform LLC

Reference42 articles.

1. Failure analysis of self-healing epoxy resins using microencapsulated 5E2N and carbon nanotubes;Zamal HH;Scientific Reports,2020

2. First generation microcapsule-based self-healing cementitious construction repair materials;Litina C;Construction and Building Materials,2020

3. Peripherally decorated binary microcapsules containing two liquids;Mookhoek SD;Journal of Materials Chemistry,2008

4. hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility;Pang JWC;Composites Science and Technology,2005

5. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene;Brown EN;Journal of Microencapsulation,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3