Thalamic Purinergic Receptors: A Gateway to Modulating Fibromyalgia Pain via NLRP3 Inflammasome Signaling and Pyroptosis

Author:

Kamel Ahmed Seif El Din1ORCID,Mohamed Maram M.2,Zaki Hala F.3

Affiliation:

1. CU Faculty of Pharmacy: Cairo University Faculty of Pharmacy

2. Al-Ganzoury Hospital

3. Cairo University Faculty of Pharmacy

Abstract

Abstract

The high pain sensitivity in fibromyalgia (FM) is processed by the thalamus that presents as a key component in the pain pathway in FM patients. Noteworthy, Purinergic receptors, specifically P2X, are implicated in pain signaling and neuroinflammation via inflammasome signaling. However, there is no available data on the impact of pharmacological intervention on P2X receptor in thalamic pain transmission in FM. To investigate this aspect, the clinically tested P2X inhibitor, Suramin (SURM), was utilized. FM was induced over three days using Reserpine (1 mg/kg/day, s.c.), followed by a single dose of SURM (100 mg/kg, i.p.). At the molecular level, SURM countered the overexpression of P2X7 and P2X4 receptors accompanied by reduced NLRP3 inflammasome complex and pyroptotic markers like gasdermin-D. This was associated by the suppression of the p38-MAPK and NF-κB pathways, along with a decrease in pro-inflammatory cytokines and tumor necrosis factor-α as observed by increased CD86 expression on M1 microglia phenotype, a neuroinflammatory marker. Concurrently, blocking the P2X receptor shifted microglia polarization towards the M2 phenotype, marked by elevated CD163 expression, as a neuroprotective mechanism. This was outlined by increased neurotrophic and anti-inflammatory; IL-10 with normalization of disturbed neurotransmitters. Behaviorally, SURM ameliorated the heightened pain processing, as observed in mechanical and thermal pain tests. Furthermore, it lowered Reserpine-induced motor impairment in the rotarod and open-field tests. This improvement in the somatosensory experience was reflected in alleviating depressive-like behavior in the forced swimming test. These findings highlight the therapeutic potential of blocking thalamic P2X receptors in alleviating fibromyalgia symptoms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3