ESRNN: Effective Residual Self-Attention Recurrent Neural Network with Soft Threading Function for Sound Event Location

Author:

Zhang Bin1,He Jiawen1,Liu Peishun1,Wang Liang1,Zhou Hao1,Wang Xuening1,Tang Ruichun1ORCID

Affiliation:

1. Ocean University of China

Abstract

Abstract Sound event location is a critical aspect of two-dimensional direction-of-arrival (2D-DOA) estimation, predicting azimuth and elevation angles in 3D Cartesian coordinates for active sound events using multi-label regression. Challenges with conventional methods like the multi-signal classification (MUSIC) algorithm and baseline convolution recurrent neural network (BCRNN) include decreased precision and high computational demands, particularly in low signal-to-noise ratio (SNR) environments (SNR\textless-5 dB). Our work introduces an innovative solution, the effective residual self-attention recurrent neural network (ESRNN). ESRNN addresses distortion problems in low SNR conditions caused by the MUSIC algorithm, also enhancing 2D-DOA prediction accuracy in various SNR-reverberation scenarios. We propose two filter structures, ESRNN-L and ESRNN-G, tailored for SNRs above 0 dB and below -5 dB, respectively. Evaluating on TAU Spatial Sound Events 2019 datasets with synthetic SNRs from -10 dB to 30 dB, our experiments demonstrate ESRNN-L achieves a 21 \(%\) lower 2D-DOA error than BCRNN at SNRs below -5 dB. Additionally, ESRNN-G exhibits a 15$%$ lower error with a 10$%$ parameter reduction when SNRs exceed 0 dB. When compared with other principal attention methods through ablation study, it also showcases the model's efficiency and robustness.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3