The Mms22-Rtt107 axis dampens the DNA damage checkpoint by reducing the stability of the Rad9 checkpoint mediator

Author:

Zhao Xiaolan1ORCID,Wan Bingbing2,Guan Danying1,Li Shibai1,Chwat-Edelstein Tzippora1

Affiliation:

1. Memorial Sloan Kettering Cancer Center

2. Shanghai Jiao Tong University

Abstract

Abstract

The DNA damage checkpoint is a highly conserved signaling pathway induced by genotoxin exposure or endogenous genome stress. It alters many cellular processes such as arresting the cell cycle progression and increasing DNA repair capacities. However, cells can downregulate the checkpoint after prolonged stress exposure to allow continued growth and alternative repair. Strategies that can dampen the DNA damage checkpoint are not well understood. Here, we report that budding yeast employs a pathway composed of the scaffold protein Rtt107, its binding partner Mms22, and an Mms22-associated ubiquitin ligase complex to downregulate the DNA damage checkpoint. Mechanistically, this pathway promotes the proteasomal degradation of a key checkpoint factor, Rad9. Furthermore, Rtt107 binding to Mms22 helps to enrich the ubiquitin ligase complex on chromatin and target the chromatin-bound form of Rad9. Finally, we provide evidence that the Rtt107-Mms22 axis operates in parallel with the Rtt107-Slx4 axis, which displaces Rad9 from chromatin. We thus propose that Rtt107 enables a bifurcated “anti-Rad9” strategy to optimally downregulate the DNA damage checkpoint.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3