Influence of MHC on genetic diversity and testicular expression of linked olfactory receptor genes

Author:

Kang Mingue1,Ahn Byeongyong1,Shin Jae Yeol1,Cho Hye-sun1,Lee Jongan2,Park Chankyu1

Affiliation:

1. Konkuk University

2. National Institute of Animal Science, Rural Development Administration

Abstract

Abstract

Background Olfactory receptor (OR) genes are highly polymorphic and form extensive families that recognize a wide range of vertebrate odorants. Although OR gene clusters are dispersed across many regions of vertebrate genomes, ORs expressed in the testes exhibit major histocompatibility complex (MHC)-linked structural conservation. Results In this study, we selected nine MHC-linked OR genes based on their expression levels in pig testes and developed a sequence-based typing method for these genes. We then performed high-resolution typing of these OR genes, along with three major classical MHC class I genes (SLA-1, -2, and − 3), in 48 pigs across six breeds. We observed significantly higher allelic diversity (P < 0.01) in ORs with strong linkage disequilibrium (LD) to SLA compared to those with weak or no LD, and we identified 48 SLA class I-OR haplotypes using the expectation-maximization algorithm. The genetic diversity of SLA-linked ORs was positively correlated with their expression levels in the testis. Specifically, SLA-linked ORs with higher testicular expression (FPKM ≥ 0.1) exhibited an increase in the number of codons under mutually diversifying selection with SLA compared to those with lower expression (FPKM < 0.1). Conclusions Our results suggest the presence of evolutionary interactions between the MHC and linked OR genes. These characteristics of SLA-linked ORs support the potential involvement of MHC-linked ORs in MHC-based mate selection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3