Laws of high-pressure phase and nanostructure evolution and severe plastic flow

Author:

Levitas Valery1ORCID,Lin Feng1,Pandey Krishan2,Yesudhas Sorb1,Park Changyong3ORCID

Affiliation:

1. Iowa State University

2. Bhabha Atomic Research Centre

3. High Pressure Collaborative Access Team, X-ray Science Division,Argonne National Laboratory

Abstract

Abstract Study of the plastic flow, strain-induced phase transformations (PTs), and microstructure evolution under high pressure is important for producing new nanostructured phases1–10 and understanding physical1,2,7−10 and geophysical11–13 processes. However, these processes depend on an unlimited combination of five plastic strain components and an entire strain path with no hope of fully comprehending. Here, we introduce the rough diamond anvils (rough-DA) to reach maximum friction equal to the yield strength in shear, which allows determination of pressure-dependent yield strength. We apply rough-DA to compression of severely pre-deformed Zr. We found in situ that after severe straining, crystallite size and dislocation density of α and ω-Zr are getting pressure-, strain- and strain-path-independent, reach steady values before and after PT, and depend solely on the volume fraction of ω-Zr during PT. Immediately after completing PT, ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. Rough-DA produce a steady state in α-Zr with lower crystallite size and larger dislocation density than smooth diamonds. This leads to a record minimum pressure (0.67 GPa) for α-ω PT with rough-DA, much smaller than 1.36 GPa with smooth diamonds, 6.0 GPa under hydrostatic condition, and phase equilibrium pressure, 3.4 GPa14. Kinetics of strain-induced PT, in addition to plastic strain, unexpectedly depends on time. This opens an unexplored field of the simultaneous strain- and stress-induced PTs under pressure. The obtained results create new opportunities in material design, synthesis, and processing of nanostructured materials by severe plastic deformations at low pressure. Rough-DA can be utilized for finding similar laws for various material systems. The above plethora of results was obtained in a single experiment, thus transforming the main challenge—strongly heterogeneous fields in a sample—into a great opportunity.

Publisher

Research Square Platform LLC

Reference34 articles.

1. Edalati K, Bachmaier A, Beloshenko VA, Beygelzimer Y, Blank VD, Botta WJ, Bryla K, Čížekg J, Divinski S, Enikeev NA, Estrin Y, Faraji G, Figueiredo RB, Fuji M, Furuta T, Grosdidier T, Gubicza J, Hohenwarter A, Horita Z, Huot J, Ikoma Y, Janečekz M, Kawasaki M, Králab P, Kuramoto S, Langdon TG, Leiva DR, Levitas VI, Mazilkin A, Mito M, Miyamoto H, Nishizaki T, Pippan R, Popov VV, Popova EN, Purcek G, Renk O, Révész Á, Sauvage X, Sklenicka V, Skrotzki W, Straumal BB, Suwas S, Toth LS, Tsuji N, Valiev RZ, Wilde G, Zhu X (2022) Mater. Res. Lett. 10, 163–256

2. Blank VD, Estrin EI (2014) Phase Transitions in Solids under High Pressure. CRC Press, New York

3. Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y (2012) Proc. Natl. Acad. Sci. U. S. A. 109, 19108–19112

4. Pérez-Prado MT, Zhilyaev AP (2009) Phys Rev Lett 102:175504

5. Levitas VI, Shvedov LK (2002) Phys Rev B 65:104109

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3