Laws of high-pressure phase and nanostructure evolution and severe plastic flow

Author:

Lin Feng1,Levitas Valery1ORCID,Pandey Krishan2,Yesudhas Sorb1,Park Changyong3ORCID

Affiliation:

1. Iowa State University

2. Bhabha Atomic Research Centre

3. Argonne National Laboratory

Abstract

Abstract Study of the plastic flow, strain-induced phase transformations (PTs), and nanostructure evolution under high pressure is important for producing new nanostructured phases and understanding physical processes. However, these processes depend on an unlimited combination of five plastic strain components and an entire strain path with no hope of fully comprehending. Here, we introduce the rough diamond anvils (rough-DA) to reach maximum friction equal to the yield strength in shear, which allows determination of pressure-dependent yield strength. We apply rough-DA to compression of severely pre-deformed Zr. We found in situ that after severe straining, crystallite size and dislocation density of α and ω-Zr are getting pressure-, strain- and strain-path-independent, reach steady values before and after PT, and depend solely on the volume fraction of ω-Zr during PT. Immediately after completing PT, ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. Rough-DA produces a steady nanostructure in α-Zr with lower crystallite size and larger dislocation density than smooth diamonds. This leads to a record minimum pressure (0.67 GPa) for α-ω PT. Kinetics of strain-induced PT, in addition to plastic strain, unexpectedly depends on time. The obtained results significantly enrich the fundamental understanding of plasticity, PTs, and nanostructure, and create new opportunities in material design, synthesis, and processing of nanostructured materials by coupling severe plastic deformations and PT at low pressure.

Publisher

Research Square Platform LLC

Reference43 articles.

1. K. Edalati, A. Bachmaier, V. A. Beloshenko, Y. Beygelzimer, V. D. Blank, W. J. Botta, K. Bryla, J. Čížekg, S. Divinski, N. A. Enikeev, Y. Estrin, G. Faraji, R. B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janečekz, M. Kawasaki, P. Králab, S. Kuramoto, T. G. Langdon, D. R. Leiva, V. I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V. V. Popov, E. N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B. B. Straumal, S. Suwas, L. S. Toth, N. Tsuji, R. Z. Valiev, G. Wilde, M. J. Zehetbauer, X. Zhu, Mater. Res. Lett. 10, 163–256 (2022).

2. V. D. Blank, E. I. Estrin, Phase Transitions in Solids under High Pressure (CRC Press, New York, 2014)

3. C. Ji, V. I. Levitas, H. Zhu, J. Chaudhuri, A. Marathe, Y. Ma, Proc. Natl. Acad. Sci. U. S. A. 109, 19108–19112 (2012).

4. M. T. Pérez-Prado, A. P. Zhilyaev, Phys. Rev. Lett. 102, 175504 (2009).

5. V. I. Levitas, L. K. Shvedov, Phys. Rev. B 65, 104109 (2002).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3