Preparation of multifunctional flame retardant composite wood by doping poplar cell walls with metal phytates

Author:

Shen Hao1,Liu Yangguang1,Wang Peiran1,Qin Shenglei1,Shi Xin1,Chu Demiao1,Liu Shengquan1

Affiliation:

1. Anhui Agricultural University

Abstract

Abstract

Phytic acid as an efficient, green and renewable bio-based flame retardant. However, in view of the large number of toxic fumes generated during combustion and the easy loss of flame retardants, to tackle these issues, the current study employed a straightforward two-step process to generate phytate metal salt wood composites (PAN-M, M = Mg, Cu, Fe, Ai and Ni) in cell walls. Compared with natural wood (Control), PAN-M has good leaching resistance of 15 ~ 50 %, lower hygroscopicity of 15 ~ 30 % and improved mechanical strength. The total heat release and smoke emission of PAN-Cu are reduced by 34.54 % and 83.05 % respectively, the LOI of PAN-Cu is increased by 117 %, the smoke density SDR is only 8.38 and the weight gain is 16.9 %. This is mainly due to the apparent surface coke protection of metal phytates and catalytic graphitisation of solid residues by metal ions. The improved carbon layer plays an effective insulating role, limiting flue gas emissions, flame retardant loss and water contact. In addition, results show that PAN-Cu can significantly enhance the dehydration effect of carbon compared to other metal ions. Therefore, PAN-M is therefore an efficient, green and sustainable flame retardant for wood.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3