Quercetin improves epithelial regeneration from airway basal cells of COPD patients

Author:

McCluskey Elizabeth S.1,Liu Nathan1,Pandey Abhimaneu1,Marchetti Nathaniel1,Sajjan Umadevi1

Affiliation:

1. Temple University

Abstract

Abstract Background Airway basal cells from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces goblet cell metaplasia and the expression of pro-inflammatory cytokines in COPD models. This study assessed whether quercetin improves epithelial regeneration from COPD airway basal cells. Methods COPD airway basal cells were treated with DMSO or 1 µM quercetin for three days. The cells were then cultured at air/liquid interface (ALI) for up to 4 weeks. Basal cells from healthy donors cultured at air/liquid interface were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA. Microarray analysis was conducted on DMSO or quercetin-treated COPD basal cells to identify differentially regulated genes (DEG) and the enriched biological pathways. Bronchial brushings from COPD patients treated with either placebo or quercetin for 6 months were used to confirm the effects of quercetin on gene expression. Results Compared to DMSO, quercetin-treated COPD basal cells showed an increase in TER and regenerated the airway epithelium with more ciliated cells, and less goblet cells and IL-8. Comparison of DMSO- and quercetin-treated COPD basal cell transcriptomic profiles indicated that quercetin upregulated genes associated with tissue and epithelial development and differentiation. COPD patients treated with quercetin, but not placebo showed significantly increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD basal cells. Bronchial brushings from active smokers showed significantly increased mRNA expression of TGF-β and IL-8, and it was reduced after quercetin treatment. Conclusions These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. Trial registration This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3