Affiliation:
1. University of Cambridge
2. Cambridgeshire and Peterborough NHS Foundation Trust
Abstract
Abstract
BACKGROUND. Epidemiological research may require linkage of information from multiple organizations. This can bring two problems: (1) the information governance desirability of linkage without sharing direct identifiers, and (2) a requirement to link databases without a common person-unique identifier. METHODS. We develop a Bayesian matching technique to solve both. We provide an open-source software implementation capable of de-identified probabilistic matching despite discrepancies, via fuzzy representations and complete mismatches, plus de-identified deterministic matching if required. We validate the technique by testing linkage between multiple medical records systems in a UK National Health Service Trust, examining the effects of decision thresholds on linkage accuracy. We report demographic factors associated with correct linkage. RESULTS. The system supports dates of birth (DOBs), forenames, surnames, three-state gender, and UK postcodes. Fuzzy representations are supported for all except gender, and there is support for additional transformations, such as accent misrepresentation, variation for multi-part surnames, and name re-ordering. Calculated log odds predicted a proband’s presence in the sample database with an area under the receiver operating curve of 0.997–0.999 for non-self database comparisons. Log odds were converted to a decision via a consideration threshold θ and a leader advantage threshold δ. Defaults were chosen to penalize misidentification 20-fold more than linkage failure. By default, complete DOB mismatches were disallowed for computational efficiency. At these settings, for non-self database comparisons, the mean probability of a proband being correctly declared to be in the sample was 0.965 (range 0.931–0.994), and the misidentification rate was 0.00249 (range 0.00159–0.00429). Correct linkage was positively associated with male gender, Black or mixed ethnicity, and the presence of diagnostic codes for severe mental illnesses or other mental disorders, and negatively associated with birth year, unknown ethnicity, residential area deprivation, and presence of a pseudopostcode (e.g. indicating homelessness). Accuracy rates would be improved further if person-unique identifiers were also used, as supported by the software. Our two largest databases were linked in 44 min via an interpreted programming language. CONCLUSIONS. Fully de-identified matching with high accuracy is feasible without a person-unique identifier and appropriate software is freely available.
Publisher
Research Square Platform LLC
Reference57 articles.
1. 1. UK. National Health Service Act 2006 [Internet]. 2006. Available from: https://www.legislation.gov.uk/ukpga/2006/41
2. 2. UK. Data Protection Act 2018 [Internet]. 2018. Available from: http://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
3. 3. Downs JM, Ford T, Stewart R, Epstein S, Shetty H, Little R, et al. An approach to linking education, social care and electronic health records for children and young people in South London: a linkage study of child and adolescent mental health service data. BMJ Open. 2019 Jan 29;9(1):e024355.
4. 4. Lyons RA, Jones KH, John G, Brooks CJ, Verplancke JP, Ford DV, et al. The SAIL databank: linking multiple health and social care datasets. BMC Med Inform Decis Mak. 2009 Jan 16;9:3.
5. 5. Bayes T. An Essay towards solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London. 1763;53:370–418.