Affiliation:
1. Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP)
2. Northwest Metabolomics Research Center; Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington
3. Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine
Abstract
Abstract
Background: Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization.
Methods: To investigate disease progression and aging, we utilized young (1-month old) and old (21-25 months old) mdx and wild-type mice. Metabolite changes were analyzed using 1-H Nuclear Magnetic Resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation, and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups.
Results: The histological analysis of the tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild type or mdx animals of the same age. The metabolites alanine, methionine, 3-methylhistidine were higher, and taurine and glycerol were lower in young animals in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05).
Conclusions: Surprisingly, histological and protein analysis reveals that the tongue of young and old mdx animals is protected from severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.
Publisher
Research Square Platform LLC