Thickness of hydrogel for nitrifying biomass entrapment determines the free ammonia susceptibility differently in batch and continuous modes

Author:

Song Minsu1,Yuan Meng1,Jeong Sanghyun1,Bae Hyokwan2

Affiliation:

1. Pusan National University

2. Ulsan National Institute of Science and Technology

Abstract

Abstract Hydrogels immobilizing nitrifying bacteria with different thicknesses of 0.55 and 1.13 cm (HG-0.55 and HG-1.13, respectively) were produced. It was recognized that the thickness of media is a crucial process parameter that affects both the stability and efficiency of wastewater treatment. Batch mode experiments were conducted to quantify specific oxygen uptake rate (SOUR) values at various total ammonium nitrogen (TAN) concentrations and pH levels. In the batch test, HG-0.55 exhibited 2.4 times higher nitrifying activity than HG-1.13, with corresponding SOUR values of 0.00768 and 0.00317 mg-O2/L·mL-PVA·min, respectively. However, HG-0.55 was more susceptible to free ammonia (FA) toxicity than HG-1.13, resulting in a reduction of 80% and 50% in SOUR values for HG-0.55 and − 1.13, respectively, upon increasing the FA concentration from 15.73 to 118.12 mg-FA/L. Continuous mode experiments were conducted to assess the partial nitritation (PN) strategy's efficiency in practical applications, where continuous wastewater inflow maintains low FA toxicity through high ammonia-oxidizing rates. With step-wise TAN concentration increases, HG-0.55 experienced a gentler increase in FA concentration compared to HG-1.13. At a nitrogen loading rate of 0.78–0.95 kg-N/m3·day, the FA increase rate for HG-0.55 was 0.0179 kg-FA/m3·day, while that of HG-1.13 was 0.0516 kg-FA/m3·day. Despite its sensitivity to FA toxicity, the thinner HG-0.55 can enhance PN performance owing to its higher ammonia-oxidizing activity. FA susceptibility depends on hydrogel thickness in batch and continuous modes, with continuous mode favoring thin gel with high ammonia-oxidizing activity due to the decrease in FA accumulation.

Publisher

Research Square Platform LLC

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3