Role of mitochondrial lncRNA GAS5 in the pathogenesis of Multiple Sclerosis: interfering with the release of miR-651-5p-enriched exosomes from microglia cells

Author:

Mohajeri-Khorasani Amirhossein1,Karimi Elham2,Zarei Mahboobeh3,Azari Hanieh4,Beyer Cordian5,Mousavi Pegah1,Sanadgol Nima5,Negahi Ahmad Agha1

Affiliation:

1. Hormozgan University of Medical Sciences

2. Tehran University of Medical Sciences

3. Tarbiat Modares University

4. Mashhad University of Medical Sciences

5. RWTH University Hospital Aachen

Abstract

Abstract

Multiple Sclerosis (MS) arises from immune system dysfunction and damage to the myelin sheath within the CNS. At various stages of MS, analyzing blood samples has the potential to help differentiate between individuals with MS and those without, detect the early onset of the disease, or distinguish between different types of MS. Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) serves a pivotal role in governing cell growth and arrest, as well as modulating the immune system by acting as the glucocorticoid receptor. This research aims to explore GAS5 expression in peripheral blood mononuclear cells (PBMCs) of Relapsing-Remitting MS (RRMS) patients and evaluate its targeted miRNAs in exosomes. Our findings revealed an elevated expression level of GAS5 in RRMS patients in contrast to control groups (P-value = 0.0121), and GAS5 demonstrated diagnostic potential for RRMS, with an AUC of 0.6498. The in-silico analysis revealed that hsa-miR-651-5p emerged as a central component in the regulatory network of GAS5, with its target genes primarily implicated in transcription and apoptosis regulation. Additionally, RUNX1, YY1, GSK3B, FMR1, and KLF2 were identified as entities linked to GAS5. In this regard, our findings indicate a significant association between redox imbalance and the dysregulation of GAS5 and miR-651-5p expression in the HMC3 cell line. Given the increased expression of miR-651-5p in exosomes under stress, the transport of miR-651-5p into serum exosomes may be varied and related to GAS5 expression in PBMCs of MS subtypes. In conclusion, GAS5 can serve as a mitochondrial marker for RRMS, and redox imbalance appears to influence its regulation, highlighting its role in the cellular stress response. Future research is suggested to focus on elucidating the molecular mechanisms underlying GAS5/miR-651-5p interaction to better understand this process.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3