Wave induced coastal flooding along the southwest coast of India during cyclone Taukate

Author:

Ramakrishnan Ratheesh1,G Remya P2,Mandal Anup1,Mohanty Prakash2,Aryakandy Prince3,Mahendra R S2,M Balakrishnan Nair T2

Affiliation:

1. Space Applications Centre, ISRO, Ahmedabad

2. Indian National Centre for Ocean Information Services, INCOIS, Govt. of India Hyderabad

3. Kerala University of Fisheries and Ocean Studies (KUFOS), Kerala

Abstract

Abstract The coastal flood during the Tauktae cyclone, 2021, at Chellanam coast, Kerala, India, has invited wide attention as the wave overtopping severely affected coastal properties and livelihood. We used a combination of WAVEWATCHIII and XBeach to study the coastal inundation during high waves. The effect of low-frequency waves and rise in the coastal water level due to wave setup caused the inundation at Chellanam, even during low tide with negligible surge height. Wave setup raised the water level at the coast with steep slopes to more than 0.6 m and peaked during low tide, facilitating wave breaking at the nearshore region. The coastal regions adjacent to these steep slopes were subjected to severe inundation. The combined effect of long and short waves over wave setup formed extreme wave runup that flooded inland areas. At gently sloping beaches, the longwave component dominated and overtopped the seawalls and damaged households along the shoreline. The study emphasizes the importance of longwave and wave setup and its interaction with nearshore bathymetry during the high wave. The present study shall lead to the development of a coastal inundation prediction system for the low-lying hot spots using the combination of WAVEWATCHIII and XBeach models.

Publisher

Research Square Platform LLC

Reference25 articles.

1. IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

2. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Huston;Zhang W;Nature Letters,2018

3. Elevated risk of tropical cyclone precipitation and pluvial flood in Houston under global warming;Zhu L;Environ. Res. Lett.

4. Assessing hazards induced vulnerability in coastal districts of India using site-specific indicators: an integrated approach;Rehman S;GeoJournal,2020

5. A comprehensive data set for tropical cyclone storm surge-induced inundation for the east coast of India;Sahoo B;International Journal of Climatology,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3