A Modified Genetic-Based solution for Power-Aware Placement of Virtual Machines

Author:

Panwar Suraj Singh1,Rauthan M. M.S.1,Barthwal Varun1

Affiliation:

1. Hemwati Nandan Bahuguna Garhwal University

Abstract

Abstract

Cloud computing has developed as a ubiquitous technology for delivering services like storage, computing, etc. via the Internet. With the rising demand by customers for cloud computation and associated services, cloud service providers are developing various approaches that enhance the performance, reliability, and availability of cloud systems. Cloud computing uses virtualization to optimise resource usage and minimise power utilisation in data centers (DC). Efficient virtual machine (VM) placement strategies are crucial, especially when using advanced genetic techniques. This research paper introduces the use of a genetic meta-heuristic approach, named PowerGA, to optimise the integration of virtual machines (VM) onto the least number of physical machines (PMs) in cloud DCs. PowerGA optimises VM deployment in cloud DCs to minimise energy utilisation and Service Level Agreement (SLA) breaches, considering factors such as VM migration, host shutdown, overload count, and active physical machines. Extensive simulations using real workload data showed significant improvements over traditional strategies like PABFD, with PowerGA achieving a 25% reduction in energy consumption (EC), 43% fewer VM migrations, a 58% improvement in SLA violations, and a 72% reduction in host shutdowns over ten days of data from PlanetLab. These results highlight PowerGA's effectiveness in energy management and SLA enhancement, demonstrating the benefits of a meta-heuristic genetic algorithm in optimising VM placement for cloud computing efficiency.

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Bharathi PD, Prakash P, Kiran MVK (2017) Virtual machine placement strategies in cloud computing. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). IEEE, pp 1–7

2. MrLBA: multi-resource load balancing algorithm for cloud computing using ant colony optimization;Muteeh A;Cluster Comput,2021

3. A systematic review on effective energy utilisation management strategies in cloud data centers;Panwar SS;J Cloud Comp,2022

4. A critical analysis of energy efficient virtual machine placement techniques and its optimization in a cloud computing environment;Choudhary A;Procedia Comput Sci,2016

5. Liu L, Zhang M, Lin Y, Qin L (2014) A survey on workflow management and scheduling in cloud computing. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE; pp. 837–846

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3