Establishment and Characterization of Immortalized Human Vocal Fold Fibroblast Cell Lines

Author:

Chu Yinying1,Fang Yi1,Wu Haitao1,Cheng Lei2,Chen Jian1ORCID

Affiliation:

1. Fudan University Eye Ear Nose and Throat Hospital

2. Fudan University Eye Ear Nose and Throat Hospital Department of Ophthalmology

Abstract

Abstract Purpose Vocal fold scarring is abnormal scar tissue in the lamina propria layer of the vocal fold. To facilitate investigation of vocal fold scarring, we established and characterized immortalized human vocal fold fibroblast (iHVFF) cell lines. Methods Human vocal fold fibroblasts were immortalized by introducing Simian virus 40 large T antigen (SV40TAg) by transfection. Successfully transfected fibroblasts were sorted using flow cytometry. Immunofluorescence cytochemistry and western blot were applied to analyze the expression of fibronectin, vimentin, alpha-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP). Cell proliferation rate was measured by CCK-8 assay. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the mRNA expression level. Results The iHVFFs continued to proliferate for more than 30 generations and appeared spindle-shaped. The expression of Vimentin and α-SMA were detected in both iHVFFs and primary fibroblasts, and enhanced expression of FAP was observed in iHVFFs. Furthermore, iHVFFs exhibited an increased proliferative capability compared with the primary fibroblasts. RT-qPCR results suggested that collagen type III alpha 1 chain (COL3A1), interleukin-6, cyclooxygenase 2 (COX2), hyaluronan synthase 2 (HAS2), hepatocyte growth factor (HGF) in the iHVFFs significantly increased, whereas transforming growth factor-β1 (TGF-β1), elastin and matrix metallopeptidase-1 (MMP-1) expression significantly downregulated. No differences in mRNA expression of α-SMA, fibronectin and collagen type I alpha 2 chain (COL1A2) were noted between iHVFFs and primary fibroblasts. Conclusion iHVFFs can be used as a novel tool cell for future researches on the mechanisms of pathogenesis and treatment of vocal fold scarring.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3