Quercetin Suppresses TNBC Cell by Targeting ORM2

Author:

Chen Zhijun1

Affiliation:

1. The Second Affiliated Hospital of Nanchang University

Abstract

Abstract Background Triple-negative breast cancer (TNBC) is known for its aggressive nature, and Quercetin (QUE) has shown potential anti-cancer effects. Methods We determined the IC50 of QUE for inhibiting cell viability in multiple TNBC, non-TNBC, and normal breast cell lines. We compared the expression of ORM2 in TNBC clinical samples and normal tissues. Additionally, we measured ORM2 expression in TNBC and normal breast cell lines. We determined the IC50 of QUE for inhibiting cell viability after ORM2 knockdown. An orthotopic implantation mice model was used to evaluate the treatment effect of QUE. We also conducted molecular docking and amino acid exchange validation to model the binding of QUE to ORM2. Furthermore, we performed a protein-protein interaction network analysis and GO enrichment analysis of differentially expressed genes associated with ORM2 in TNBC. Results QUE inhibited the viability of both TNBC and non-TNBC cell lines, but it was specifically associated with worse survival in TNBC patients. We observed higher expression of ORM2 in breast cancer cells compared to normal breast cells. Knockdown of ORM2 reduced the viability of TNBC cells. Treatment with QUE inhibited ORM2 expression and decreased viability in TNBC cells. In the animal model, QUE improved survival and downregulated ORM2 expression in tumors. Enrichment analysis provided insights into the potential functions of ORM2. Conclusion Our findings indicate that QUE directly inhibits TNBC cell viability through its interaction with ORM2. These results contribute to our understanding of the anti-cancer mechanisms of QUE in TNBC and highlight ORM2 as a potential therapeutic target.

Publisher

Research Square Platform LLC

Reference69 articles.

1. The ever-increasing importance of cancer as a leading cause of premature death worldwide;Bray F;Cancer,2021

2. Global cancer statistics;Jemal A;CA Cancer J Clin,2011

3. Siegel RL, Miller KD, Fuchs HE and Jemal A. Cancer Statistics, 2021. CA Cancer J Clin 2021; 71: 7–33.

4. The Role of Transient Receptor Potential Melastatin 7 (TRPM7) in Cell Viability: A Potential Target to Suppress Breast Cancer Cell Cycle;Liu H;Cancers (Basel),2020

5. The Landscape of Targeted Therapies in TNBC;Vagia E;Cancers (Basel),2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3