Elimination of apoptotic cells by non-professional embryonic phagocytes can be stimulated or inhibited by external stimuli

Author:

Pisko Jozef1,Šefčíková Zuzana1,Kovaříková Veronika1,Čikoš Štefan1,Fabian Dušan1

Affiliation:

1. Institute of Animal Physiology

Abstract

Abstract In mouse blastocysts, the majority of incidentally occurring apoptotic cells is eliminated by neighbouring embryonic cells. Some apoptotic cells escape phagocytosis, but the frequency of such processes usually does not exceed 10%. The aim of the current study was to evaluate whether the efficiency of embryonic efferocytosis can be modulated by external stimuli. Experiments were performed in vitro on cultured mouse blastocysts with a differentiated trophectoderm and inner cell mass and on the human trophoblast cell line Ac-1M88. Samples were assessed using fluorescence immunostaining: Apoptotic cells (TUNEL) internalised within the cytoplasm of non-professional embryonic phagocytes (phalloidin T membrane staining) were considered ingested; apoptotic cells co-localised with acidified phagosomes (LysoTracker) were considered digested. First, we tested the ability of embryonic phagocytes to respond to elevated incidence of apoptosis induced by actinomycin D (4 nM). The results showed that the increase in apoptosis was accompanied by a significant elevation of the phagocytosis and digestion of dead cells in both mouse blastocysts and human trophoblast cells. We then assessed the effect of selective inhibition of lysosomal acidification in embryonic phagocytes using bafilomycin A1. The results showed that the inhibitor at 0.1 and 0.2 nM was able to negatively affect the execution of both initiative and terminal phases of efferocytosis in mouse blastocysts, although the decrease was not as profound as expected. When compared to mouse trophectoderm cells, human hybrid cells displayed a very low sensitivity to bafilomycin A1. Higher concentrations of bafilomycin A1 had a more harmful impact on overall cell viability than on digestive activity. The results show that the ability of non-professional embryonic phagocytes to successfully execute all stages of efferocytosis is not limited by the frequency of spontaneous apoptosis. The effectiveness of embryonic phagocytes can be partially decreased by selective inhibition of lysosomal acidification conducted via V-ATPase.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3