Clinically Applicable System For 3D Teeth Segmentation in Intraoral Scans using Deep Learning

Author:

Hao Jin1,Liao Wen2,Zhang Yueling2,Li Peilin2,Yi Jianru2,Peng Jerry3,Zhao Zeu3,Chen Zhang3,Shi Wenxuan3,Chen Tingyu3,Zhou Bowen4,Feng Yang4,Fang Bing5,Hu Haoji6,Yang Howard6,Li Erping6ORCID,Liu Zuozhu6,Zhao Zhihe2

Affiliation:

1. Harvard University

2. Sichuan University

3. DeepAlign Tech Inc.

4. Angel Align Inc.

5. Department of Orthodontics, Shanghai Ninth People’s Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine

6. Zhejiang University

Abstract

Abstract Digital dentistry plays a pivotal role in dental healthcare. A critical step in many digital dental systems is to accurately delineate individual teeth and the gingiva in the three-dimension (3D) intraoral scanned (IOS) mesh data. However, previous state-of-the-art methods are either time-consuming or error-prone, hence hinder their clinical applicability. In this paper, we present an accurate, efficient, and fully-automated deep learning model, trained on a dataset of 4,000 IOS data annotated by experienced human experts. On a hold-out dataset of 200 scans, our model achieves a per-face accuracy, average-area accuracy and area under the receiver operating characteristic curve (AUC) of 96.94%, 98.26%, and 0.9991, respectively, significantly outperforming the state-of-the-art baseline. In addition, our model only takes about 24 seconds to generate segmentation outputs, as compared to over 5 minutes by the baseline and 15 minutes by human experts. A clinical performance test of 500 patients with malocclusion or/and abnormal teeth shows that 96.9% of the segmentations are satisfactory for clinical applications, 2.9% automatically trigger alarms for human improvement, and only 0.2% of them need rework. Our research demonstrates the potential for deep learning to improve the efficacy and efficiency of dental treatment and digital dentistry.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3