Affiliation:
1. Harvard University
2. Sichuan University
3. DeepAlign Tech Inc.
4. Angel Align Inc.
5. Department of Orthodontics, Shanghai Ninth People’s Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine
6. Zhejiang University
Abstract
Abstract
Digital dentistry plays a pivotal role in dental healthcare. A critical step in many digital dental systems is to accurately delineate individual teeth and the gingiva in the three-dimension (3D) intraoral scanned (IOS) mesh data. However, previous state-of-the-art methods are either time-consuming or error-prone, hence hinder their clinical applicability. In this paper, we present an accurate, efficient, and fully-automated deep learning model, trained on a dataset of 4,000 IOS data annotated by experienced human experts. On a hold-out dataset of 200 scans, our model achieves a per-face accuracy, average-area accuracy and area under the receiver operating characteristic curve (AUC) of 96.94%, 98.26%, and 0.9991, respectively, significantly outperforming the state-of-the-art baseline. In addition, our model only takes about 24 seconds to generate segmentation outputs, as compared to over 5 minutes by the baseline and 15 minutes by human experts. A clinical performance test of 500 patients with malocclusion or/and abnormal teeth shows that 96.9% of the segmentations are satisfactory for clinical applications, 2.9% automatically trigger alarms for human improvement, and only 0.2% of them need rework. Our research demonstrates the potential for deep learning to improve the efficacy and efficiency of dental treatment and digital dentistry.
Publisher
Research Square Platform LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献