Identification of the ceRNA axis of circ_0000006/miR-483-5p/KDM2B in the progression of aortic aneurysm to aorta dissection

Author:

Liu Yong1,Tan Xiong1,Wang Liang1,Jin Weitao1,He Yangchen1,yan Yu1,Hu Kai1,Wang Hao1,Xiang Chaohu1,Hou Ming1,Lai Yinglong1

Affiliation:

1. Affiliated Hospital of North Sichuan Medical College

Abstract

Abstract

Background Aortic aneurysm (AA) and aortic dissection (AD) are serious cardiovascular disorders with a high risk of mortality. The molecular mechanisms underlying the progression from AA to AD are not well understood. This study aimed to identify the key circular RNA (circRNA)-microRNA (miRNA)-messenger RNA (mRNA) regulatory axis involved in this disease progression. Methods CircRNA microarray, miRNA microarray, and mRNA sequencing were performed on plasma samples from healthy controls, AA patients, and AD patients. Bioinformatics analysis integrated the expression profiles to identify dysregulated circRNA-miRNA-mRNA networks. Key molecules were validated in vascular smooth muscle cells (VSMCs) and an AD mouse model. Cell proliferation, migration, and phenotypic transition assays were conducted after modulating the identified circRNA. The impact on AD progression was evaluated in mice upon circRNA knockdown. Results A total of 12 circRNAs were found upregulated in AD compared to AA samples. miR-483-5p was downregulated while its targets KDM2B and circ_0000006 were upregulated in AD. Silencing circ_0000006 in VSMCs inhibited PDGF-induced phenotypic switching, proliferation, and migration by increasing miR-483-5p and decreasing KDM2B levels. In the AD mouse model, knockdown of circ_0000006 alleviated disease progression with similar molecular changes. Conclusion The study identified a novel circ_0000006/miR-483-5p/KDM2B axis dysregulated during AD progression. Targeting this axis, especially circ_0000006, could be a potential strategy to mitigate the transition from AA to AD by modulating VSMC phenotype and function.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3