A Self-Representation Weighted based Density Peaks Clustering Method

Author:

YU Qiangguo1,Zhang Zhikun1,WANG Peiliang1,SHEN Qing1,Jia Liangquan1

Affiliation:

1. Huzhou College

Abstract

Abstract The calculation method of density has an important influence on the clustering performance of density peak clustering method (DPC), the different density calculation methods are applied for the different datasets. To solve this problem, a self-representation weighted density peak clustering method (SR-DPC) is proposed in this study. Different from DPC, SR-DPC not only considers the local information of data points, but also enhances the influence of different data points on the data center by introducing the idea of weighting, so as to improve the accuracy of finding the data center.Furthermore, SR-DPC can adaptively reflect the influence of different data points on the data center points through the feature representation among data points, and the weighted Gaussian kernel distance is adopted to replace the Euclidean distance, so as to improve its clustering performance. Experimental results based on synthetic datasets and real datasets show that SR-DPC method is effective and practical.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3