Dense video super-resolution time-differential network with feature enrichment module

Author:

Wu Lijun1,Ma Yong1,Chen Zhicong1

Affiliation:

1. Fuzhou University

Abstract

Abstract Video super-resolution is capable of recovering high-resolution images from multiple low-resolution images, where loop structures are a common frame choice for video super-resolution tasks. BasicVSR employs bidirectional propagation and feature alignment to efficiently utilize information from the entire input video. In this work, we improved the performance of the network by revisiting the role of the various modules in BasicVSR and redesigning the network. Firstly, we will maintain centralized communication with the reference frame through the reference-based feature enrichment module after optical flow distortion, which is helpful for handling complex motion, and at the same time, for the selected keyframe, according to the degree of motion deviation of the adjacent frame relative to the keyframe, it is divided into two different regions, and the model with different receptive fields is adopted for feature extraction to further alleviate the accumulation of alignment errors. In the feature correction module, we modify the simple residual block stack to RIR structure, and fuse different levels of features with each other, which can make the final feature information more comprehensive and abundant. In addition, dense connection are introduced in the reconstruction module to promote the full use of hierarchical feature information for better reconstruction. Experimental verification is carried out on two public datasets: Vid4 and REDS4, and the comparative results show that compared with BasicVSR, the PSNR quantitative indexes of the proposed improved model on the two datasets are improved by 0.20dB and 0.33dB, respectively. In addition, from the point of view of visual perception, the model can effectively improve the clarity of the image and reduce artifacts.

Publisher

Research Square Platform LLC

Reference40 articles.

1. K. C. Chan, X. Wang, X. Xu, J. Gu, and C. C. Loy, "Glean: Generative latent bank for large-factor image super-resolution," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 14245–14254.

2. C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional network for image super-resolution," in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part IV 13, 2014, pp. 184–199: Springer.

3. Attention-enhanced multi-scale residual network for single image super-resolution," Signal;Sun Y,2022

4. "A lightweight multi-scale residual network for single image super-resolution," Signal;Chen X,2022

5. Single-image super-resolution via a lightweight convolutional neural network with improved shuffle learning," Signal, Image and Video Processing;Lu X,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3