How to Annotate Patient Monitoring Alarms in Intensive Care Medicine for Machine Learning

Author:

Klopfenstein Sophie Anne Inès1,Flint Anne Rike1,Heeren Patrick1,Prendke Mona1,Chaoui Amin1,Ocker Thomas1,Chromik Jonas2,Arnrich Bert2,Balzer Felix1,Poncette Akira-Sebastian1

Affiliation:

1. Charité – Universitätsmedizin Berlin, Universität zu Berlin

2. University of Potsdam, Digital Health - Connected Healthcare

Abstract

Abstract Alarm fatigue, a multi-factorial desensitization of personnel toward alarms, can harm both patients and healthcare staff in intensive care units (ICU). False and non-actionable alarms contribute to this condition. With an increasing number of alarms and more patient data being routinely collected and documented in ICUs, machine learning could help reduce alarm fatigue. As data annotation is complex and resource intensive, we propose a rule-based annotation method combining alarm and patient data to classify alarms as either actionable or non-actionable. This study presents the development of the annotation method and provides resources that were generated during the process, such as mappings.

Publisher

Research Square Platform LLC

Reference70 articles.

1. Improving alarm performance in the medical intensive care unit using delays and clinical context;Görges M;Anesth. Analg.,2009

2. Poor prognosis for existing monitors in the intensive care unit;Tsien CL;Crit. Care Med.,1997

3. Intensive care unit alarms—How many do we need?*;Siebig S;Crit. Care Med.,2010

4. Crying wolf: false alarms in a pediatric intensive care unit;Lawless ST;Crit. Care Med.,1994

5. Medical electrical equipment – Part 1–8: General requirements for basic safety and essential performance – Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems – Amendment 2. (IEC, Int. Electrotechnical Commission, 2020).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3