The structure-activity interactions of Cu/Zn, In/Pd and Fe/K catalysts supported on mesoporous SBA-15; CO2 Hydrogenation at Low Pressure

Author:

Abelniece Zane1,Cutrufello Maria Giorgia2,Rombi Elisabetta2,Stanke Agija1,Piirsoo Helle-Mai3,Mändar Hugo3,Tamm Aile3

Affiliation:

1. Riga Technical University

2. University of Cagliari

3. University of Tartu

Abstract

Abstract To minimize greenhouse gas emissions, efficient carbon dioxide capture and utilization need to be addressed. In this study, to determine the structure-activity interplay, three different promising catalytic systems for the CO2 hydrogenation process were synthesized using mesoporous silica SBA-15 as a support material: copper-based catalyst with zinc, indium-based catalyst with palladium and iron-based catalyst with potassium. The role of metal–metal oxide interaction has been showed. The use of Cu/Zn catalytic system and SBA-15 allowed to obtain very small crystallite size of tenorite and zinc oxide, good dispersion of active phases with strong basic sites. In order to find the most effective catalyst providing the maximal methanol yield and selectivity, these catalytic systems were compared under the same reaction conditions (250°C, 20 bar, H2 to CO2 molar ratio 4 to 1) using fixed-bed tubular micro-activity reactor. Results showed that the highest methanol yield can be obtained with Cu/Zn/SBA-15 catalyst as might be expected according to obtained characterization.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3