Towards Development of a Cloud-Connected IoT Forensic Model

Author:

Almolhis Nawaf Abdulaziz1

Affiliation:

1. Jazan University

Abstract

Abstract Recent years have witnessed an increasing number of IoT-related cybersecurity incidents, which is mainly due to three reasons: immaturity of IoT security, extensive use of IoT technologies in various fields, and a dramatic surge in the number of IoT users (particularly, in case of cloud connected IoT (cloud-IoT) technologies). On the other hand, to execute forensic investigations that involve cloud-IoT environments, there is a need for knowledge and skill in different areas such as readiness, live and dead forensics. Though, accomplishment of this objective with the use of conventional approaches could be noticeably challenging. For that reason, it is must to develop a cloud-IoT forensic process model capable of guiding consumers before, during, and after the occurrence of an incident. The current paper is focused on developing a consumer-oriented process model. In addition, this study uses the Forensics Iterative Development Model (FIDM) to examine the effectiveness of the proposed model on a simulated cloud-IoT environment in reflecting two different cloud crime scenarios. The process of developing the model is elaborated in the paper. Considering the challenges extracted through a comprehensive literature review, this study defined the requirements that need to be satisfied by forensic process models aiming to make investigation within cloud-IoT environments. In this sense, the forensic process models introduced already in the literature were assessed on the basis of the requirements defined. Then, a set of inclusion criteria was formed for the evaluation of the conventional digital forensics process models so that we could mark out the best group of models that could have best contribution to developing the proposed model. The final output of the present paper was an innovative model called Cloud-IoT Forensic Process Model (CFPM) capable of taking into consideration the consumers’ perspectives. Finally, the CFPM performance was evaluated by implementing it on two case scenarios. The obtained results confirmed the high effectiveness of the proposed model in terms of performing the tasks defined.

Publisher

Research Square Platform LLC

Reference113 articles.

1. Digital evidence, digital investigations and e-disclosure: A guide to forensic readiness for organisations, security advisers and lawyers;Sommer P,2012

2. Zawoad S, Hasan R, Skjellum A (2015) “OCF: an open cloud forensics model for reliable digital forensics,” in IEEE 8th international conference on cloud computing, 2015, pp. 437–444

3. A survey of information security incident handling in the cloud;Ab Rahman NH;Comput Secur,2015

4. Locking the sky: a survey on IaaS cloud security;Vaquero LM;Computing,2011

5. “The Basics of Cloud Forensics;Cruz X,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3