Optimal Design of Armored Vehicle Protective Components under Blast Impact

Author:

Li Mingxing1,Fu Tiaoqi1,Wang Xianhui1,Qin Weiwei1,He Jiahao1,Yao Tuzao1,Sun Xiaowang1,Peng Bing1,Wu Mengyang1

Affiliation:

1. Nanjing University of Science and Technology

Abstract

Abstract Traditional protective structure optimization design processes do not often consider uncertainty factors, such as material properties and structural dimensions. This causes the optimization results to be near the constraint boundaries and leads to insufficient reliability and robustness of the design. In this study, an accurate finite element model was obtained for armored vehicle protective component design through a physical explosion test and a simulation of the whole vehicle. Subsequently, uncertainty optimization, reliability optimization, and robustness optimization were introduced into the optimization process, and the uncertainty optimization results were analyzed and compared for different constraint degrees. The results show that the reliability of the results obtained from traditional deterministic optimization was low. Introducing the reliability optimization and robustness optimization design methods into the protective component design significantly improved the reliability of the protective component results.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3