Modulating red mud for fabrication of cementitious material by analyzing the thermal evolution of hydrogarnets

Author:

Wang Beibei1,Wu Jiaming1,Sun Xiaojie1,Jiang Jun1,Yang Qingchun1,Li Quanliang1,Ye Zhengmao1,Guo Jiayu1,Wang Xiaohao1

Affiliation:

1. University of Jinan

Abstract

Abstract This work aims to develop a modulation strategy for converting red mud (RM) into cementitious material based on elucidating the phase transformation of hydrogarnet. The results show that cementitious minerals 2CaO⋅SiO2 (C2S), 12CaO⋅7Al2O3 (C12A7), and 4CaO⋅Al2O3⋅Fe2O3 (C4AF), as well as the free iron minerals Fe and FeO, are formed by integrating calcification dealkalization and reduction roasting treatment of RM. During the reduction roasting process, CaO is preferentially combined with SiO2 and Al2O3 to form cementitious minerals, and the Fe(III) compounds in hydrogarnet and hematite can be directly reduced to free iron minerals without intermediate ferrites. By optimizing the reduction roasting parameters and eliminating the useless minerals 2CaO⋅Al2O3⋅SiO2 (C2AS) and FeO, the reduction roasting product is mainly composed of C2S, C12A7, C4AF, and Fe. Therefore, cementitious material is obtained after the magnetic separation of Fe, which possesses both early and late hydration properties. In addition, 75% Fe in RM can be recovered, and the reduced iron powder (RIP) is also useful in the cement clinker production or steel smelting process. The findings in this work lay the foundations for understanding the phase transformation of RM-derived hydrogarnet in the reduction roasting process and also provide a new reference for the modulation and utilization of RM in the cement and concrete field.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3