Investigating changes in the premotor cortex-derived frontal-striatal-thalamic subcircuit in attenuated psychosis syndrome

Author:

Katagiri Naoyuki1,Tagata Hiromi1,Uchino Takashi1,Arai Yu1,Saito Junichi1,Kamiya Kouhei1,Hori Masaaki1,Mizuno Masafumi2,Nemoto Takahiro1

Affiliation:

1. Toho University

2. Tokyo Metropolitan Matsuzawa Hospital

Abstract

Abstract Frontal-striatal-thalamic circuit impairment is presumed to underlie schizophrenia. Individuals with attenuated psychosis syndrome (APS) show longitudinal volume reduction of the putamen in the striatum, which has a neural connection with the premotor cortex through frontal-striatal-thalamic subcircuit. However, comprehensive investigations into the biological changes in the frontal-striatal-thalamic subcircuit originating from the premotor cortex are lacking in APS. We investigated differences in fractional anisotropy (FA) values between the striatum and premotor cortex (ST-PREM) and between the thalamus and premotor cortex (T-PREM) in individuals with APS and healthy controls, using a novel method TractSeg. Our study comprised 36 individuals with APS and 38 healthy controls. There was a significant difference between the control and APS groups in the right T-PREM (Odds ratio = 1.76, p = 0.02). Other factors, such as age, sex, other values of FA, and antipsychotic medication, were not associated with differences between groups. However, while FA value reduction of ST-PREM and T-PREM in schizophrenia has been previously reported, in the present study on APS, the alteration of the FA value was limited to T-PREM in APS. This finding suggests that ST-PREM impairment is not predominant in APS but emerges in schizophrenia. Impairment of the neural network originating from the premotor cortex can lead to catatonia and aberrant mirror neuron networks that are presumed to provoke various psychotic symptoms of schizophrenia. Our findings highlight the potential role of changes in a segment of the frontal-thalamic pathway derived from the premotor cortex as a biological basis of APS.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3