Water Quality Evaluation Using Machine Learning Techniques

Author:

Gavali Kajal Rajendra1,Gundale A. S.1

Affiliation:

1. Walchand Institute of Technology Ashok Chouk Solapur

Abstract

Abstract One of the most significant and serious issues currently affecting mankind is the degradation of natural water resources, such as rivers and lakes. Polluted water has longterm repercussions on all facets of existence. In order to maximise your water quality, it is crucial to manage your water resources. The impacts of water contents can be efficiently managed if data are analysed and water quality can be forecasted.This study’s objective is to develop a model for predicting quality of water is based on measurements of water quality using machine learning. With some data obtained through machine learning, models made of algorithms can be created. The collected data will be preprocessed, divided into training and testing portions, and exposed to machine learning classification techniques for a better assessment of parametric findings. Some of the classification type techniques used in this work are Decision Tree, LinearSVC, Random Forest, GradientBoosting, SGD, and KNeighbour. Each model’s performance indicators are computed and are different from one another. Hyper tuning is a method for raising perfor- mance metrics for models of machine learning.

Publisher

Research Square Platform LLC

Reference20 articles.

1. ”Dual Kidney-Inspired Algorithm for Water Quality Prediction and Cancer Detection;Abdullah S;in IEEE Access,2020

2. AjayiO. O.,A. B.Bagula,H. C.Maluleke,Z.Gaffoor,N.Jovanovicand K. C.Pietersen,”WaterNet:ANetworkforMonitoringandAssessingWaterQualityforDrinkingandIrrigationPurposes,”inIEEEAccess,vol.10,pp.48318–48337,2022,doi:10.1109/ACCESS.2022.3172274.

3. Al-SulttaniA. O.,M.Al-Mukhtar,A. B.Roomi,A. A.Farooque, K. M.KhedherandZ. M.Yaseen,”Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction,”inIEEE Access,vol.9,pp.108527–108541,2021,doi:10.1109/AC- CESS.2021.3100490.

4. AslamB.,A.Maqsoom,A. H.Cheema,F.Ullah,A.AlharbiandM.Im- ran, ”Water Quality Management Using Hybrid Machine Learning and Data Mining Algorithms: An Indexing Approach,”in IEEE Access,vol.10,pp.119692–119705,2022,doi:10.1109/ACCESS.2022.3221430.

5. ”A Portable Sensor System for Measurement of Fluorescence Indices of Water Samples;Brandl M;in IEEE Sensors Journal,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3