Deep learning-based predictive classification of functional subpopulations of hematopoietic stem cells and multipotent progenitors

Author:

Wang Shen1,Han Jianzhong2,Huang Jingru3,Islam Khayrul1,Shi Yuheng4,Zhou Yuyuan5,Kim Dongwook2,Zhou Jane6,Lian Zhaorui2,Liu Yaling5,Huang Jian2ORCID

Affiliation:

1. Lehigh University Department of Mechanical Engineering and Mechanics

2. Coriell Institute for Medical Research

3. Fudan University

4. Shanghai Medical College of Fudan University: Fudan University School of Basic Medical Sciences

5. Lehigh University

6. Brown University

Abstract

Abstract Background Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) play a pivotal role in maintaining lifelong hematopoiesis. The distinction between stem cells and other progenitors, as well as the assessment of their functions, has long been a central focus in stem cell research. In recent years, deep learning has emerged as a powerful tool for cell image analysis and classification/prediction. Methods In this study, we explored the feasibility of employing deep learning techniques to differentiate murine HSCs and MPPs based solely on their morphology, as observed through light microscopy (DIC) images. Results After rigorous training and validation using extensive image datasets, we successfully developed a three-class classifier, referred to as the LSM model, capable of reliably distinguishing long-term HSCs (LT-HSCs), short-term HSCs (ST-HSCs), and MPPs. The LSM model extracts intrinsic morphological features unique to different cell types, irrespective of the methods used for cell identification and isolation, such as surface markers or intracellular GFP markers. Furthermore, employing the same deep learning framework, we created a two-class classifier that effectively discriminates between aged HSCs and young HSCs. This discovery is particularly significant as both cell types share identical surface markers yet serve distinct functions. This classifier holds the potential to offer a novel, rapid, and efficient means of assessing the functional states of HSCs, thus obviating the need for time-consuming transplantation experiments. Conclusion Our study represents the pioneering use of deep learning to differentiate HSCs and MPPs under steady-state conditions. With ongoing advancements in model algorithms and their integration into various imaging systems, deep learning stands poised to become an invaluable tool, significantly impacting stem cell research.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3