A chip-scale atomic beam clock

Author:

Martinez Gabriela1,Li Chao2ORCID,Staron Alexander1,Kitching John3ORCID,Raman Chandra4,McGehee William3ORCID

Affiliation:

1. Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA, Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA

2. School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA, Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA

3. Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA

4. School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Abstract Atomic beams are a longstanding technology for atom-based sensors and clocks with widespread use in commercial frequency standards. Here, we report the demonstration a chip-scale microwave atomic beam clock using coherent population trapping (CPT) interrogation in a passively pumped atomic beam device. The beam device consists of a hermetically sealed vacuum cell fabricated from an anodically bonded stack of glass and Si wafers. Atomic beams are created using a lithographically defined microcapillary array connected to a Rb reservoir1 and propagate in a 15 mm long drift cavity. We present a detailed characterization of the atomic beam performance (total Rb flux ≈ 7.7 × 1011 s-1 at 363 K device temperature) and of the vacuum environment in the device (pressure < 1 Pa), which is sustained using getter materials which pump residual gases and Rb vapor. A chip-scale beam clock is realized using Ramsey CPT spectroscopy of the 87Rb ground state hyperfine transition over a 10 mm Ramsey distance in the atomic beam device. The prototype atomic beam clock demonstrates a fractional frequency stability of ≈ 1.2 × 10-9/√τ for integration times τ from 1 s to 250 s, limited by detection noise. Optimized atomic beam clocks based on this approach may exceed the long-term stability of existing chip-scale clocks, and leading long-term systematics are predicted to limit the ultimate fractional frequency stability below 10-12.

Publisher

Research Square Platform LLC

Reference53 articles.

1. Cascaded collimator for atomic beams traveling in planar silicon devices;Li C;Nat Commun,2019

2. Chip-scale atomic devices;Kitching J;Applied Physics Reviews,2018

3. Mescher, M. J., Lutwak, R. & Varghese, M. An ultra-low-power physics package for a chip-scale atomic clock. in Transducers ’05, IEEE International Conference on Solid-State Sensors and Actuators 311–316 (2005). doi:10.1109/SENSOR.2005.1496419.

4. A low-power, high-sensitivity micromachined optical magnetometer;Mhaskar R;Appl. Phys. Lett.,2012

5. Lutwak, R. et al. THE CHIP-SCALE ATOMIC CLOCK – PROTOTYPE EVALUATION. Proceedings of IEEE International Frequency Control Symposiums and European Frequency and Time Forum 1327–1333 (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3