Abstract
Abstract
The rapid growth of industrialization has led to the uncontrolled pollution of the environment, and rapid action is needed. This study synthesized Ag/TiO2/polyvinyl alcohol (PVA) nano photocatalyst for promising light-derived photocatalytic removal of heavy metal ions. The design of experiment (DOE) was used to study the effect of important factors (pH, reaction time, and photocatalyst dosage) to maximize the final performance of the photocatalyst. In the optimized condition, the Ag/TiO2/PVA nano-photocatalyst removed more than 94% of Cr6+ in 180 minutes, and the efficiency was more than 70% for Cu2+, Zn2+, and Ni2+ metal ions. The adsorption of the heavy metal ions on the photocatalyst was described well with the Langmuir isotherm, while the pseudo-second-order linear kinetic model fitted with the experimental data. The nano-photocatalyst's stability was confirmed after maintaining its performance for five successive runs. The enhanced photocatalytic activity for the heavy metal ions removal can be attributed to the presence of metallic silver nanoparticles (electron transfer and plasmonic fields mechanisms) and PVA, which delayed the recombination of electron-hole. The synthesized ternary Ag/TiO2/PVA nano-photocatalyst showed promising performance for the elimination of heavy metal ions and can be used for environmental remediation purposes.
Publisher
Research Square Platform LLC