Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure

Author:

Dasari Tarun1ORCID,Chakraborty Praloy1,Mukli Peter1,Akhtar Khawaja1,Yabluchanskiy Andriy1,Cunningham Madeleine W.1,Csiszar Anna1,Po Sunny S.1

Affiliation:

1. University of Oklahoma: The University of Oklahoma

Abstract

Abstract Purpose Acute decompensated heart failure is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown if neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level Tragus stimulation on inflammation and oxidative stress in ADHF. Methods 19 patients with ejection fraction < 40% were randomized to neuromodulation- 4 hours twice daily (6 AM-10 AM and 6 PM-10 PM) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using dihydrodichlorofluorescein probe test (expressed as fluorescein units). Results Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum Interleukin-6 levels (-78% vs -9%; p = 0.012). Similarly, neuromodulation led to reduction of endothelial cell oxidative stress, in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant difference in heart rate, blood pressure or renal function were noted between the two groups. Conclusion In this proof-of-concept pilot study, in acute systolic heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of cellular oxidative stress. Clinical trial: NCT02898181

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3