Hydrogeochemical Characterization and Analysis of the Relation between Underground Oil Storage Caverns Construction and Hydro-environment

Author:

Wang Zhechao1,Li Cheng1,Qiao Liping1,Zhong Shengran1

Affiliation:

1. Northeastern University

Abstract

Abstract Hydrogeochemical environment is of critical importance for the environment-friendly operation of underground oil storage caverns. The construction of underground oil storage caverns usually has an impact on the hydro-environment. The characterization and analysis of the hydrogeochemical environment can provide information on the relation between construction and hydro-environment. The quality of water samples was detected and analyzed to determine the chemical type in an underground oil storage cavern in China. The water samples are classified using principal component analysis and cluster analysis. The source and proportion of seepage water into the storage caverns are determined with end member mixing calculation. The results show that the chemical type of groundwater is mainly HCO3 + Cl − Na type, and the two dominant factors affecting the evolution of hydrogeochemical content are rock dissolution and groundwater seepage. All water samples can be catalogued as seepage water, water curtain water, X River water and background water. The water curtain water can fully penetrate into the ground to provide containment for the storage caverns, and the water curtain system has a good performance and can basically cover the project area. Most of the seepage water into the storage caverns comes from water curtain water and X River water, while the proportion of background water is relatively low. The construction of underground oil storage caverns affects the groundwater flow regime by changing the directions of groundwater flow around the caverns. This study showcases the use of hydrogeochemical analysis in depicting the interplay between surface water and groundwater for underground rock engineering.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3