Polygenic risk score-based prediction for Parkinson’s disease

Author:

Wen Yalu1,Zhang Jiayu2ORCID,Yu Hongmei2,Liu Long2

Affiliation:

1. University of Auckland

2. Shanxi Medical University

Abstract

AbstractParkinson’s disease (PD) is a complex neurodegenerative disorder with unclear etiology and ineffective treatments. Integrating multimodal data for PD prediction remains challenging. We analyzed data obtained from the Parkinson’s Progression Markers Initiative, using polygenic risk scores (PRS) to reflect genetic susceptibility to PD. We compared the prediction accuracy of models with PRS, demographics, clinical assessment, and biomarkers progressively integrated and investigated relationships. The SDPR-based PRS exhibited the highest prediction performance with an AUC of 0.75. Models combining PRS, demographic, and clinical variables achieved an AUC of 0.91, surpassing models without PRS and matching those with biomarkers. PRS correlated with olfactory function and Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), with its influence on PD risk dependent on gender and MDS-UPDRS. Our study illuminates PD etiology and provides a practical risk assessment framework, highlighting its omnigenic architecture, and the potential for accurate prediction using PRS and non-invasive clinical data.

Publisher

Research Square Platform LLC

Reference40 articles.

1. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016;Collaborators GBDN;Lancet Neurol,2019

2. Dorsey ER, Bloem BR. The Parkinson Pandemic-A Call to Action. JAMA Neurol. Jan 1 2018;75(1):9–10. doi:10.1001/jamaneurol.2017.3299

3. Parkinson's disease: clinical features and diagnosis;Jankovic J;J Neurol Neurosurg Psychiatry. Apr,2008

4. The Parkinson's Disease Genome-Wide Association Study Locus Browser;Grenn FP;Mov Disord. Nov,2020

5. Parkinson's Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis;DeMaagd G;P T.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3